Journal of Organometallic Chemistry, 76 (1974) 257–263 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PREPARATION OF DIMETHYLPLATINUM(IV) AND MONOMETHYL-PLATINUM(IV) COMPOUNDS FROM MONOMETHYLPLATINUM(II) COMPOUNDS

J.R. HALL and G.A. SWILE

Chemistry Department, University of Queensland, St. Lucia, Brisbane 4067 (Australia)

(Received December 20th, 1973; in revised form March 25th, 1974)

Summary

Using PtCH₃(NBD)I (NBD = norbornadiene) as starting material, compounds of the type PtCH₃L₂I (L₂ = 1,5-cyclooctadiene and N, N, N', N'-tetramethylethylenediamine, L = 3,5-lutidine and benzylamine) have been prepared and characterized by ¹H NMR and elemental analysis. The compounds with L = lutidine, L₂ = N, N, N', N'-tetramethylethylenediamine undergo oxidative addition with both CH₃I and I₂ to yield dimethylplatinum(IV) and monomethylplatinum(IV) compounds respectively.

Introduction

The chemistry of both the dimethylplatinum(IV) and monomethylplatinum(IV) systems has until the last few years been 1² rited almost completely to those compounds containing tertiary phosphine and arsine ligands [1-4]. However, the compounds [Pt(CH₃)₂X₂]_n have recently been prepared by several independent routes [5-7] and these have proved to be useful starting materials for the preparation of a variety of dimethylplatinum(IV) compounds [6, 8, 9]. For example, reaction of [Pt(CH₃)₂X₂]_n with a variety of N-donor ligands yielded the complexes [Pt(CH₃)₂L₂X₂], where L₂ is one bidentate or two unidentate ligands, and without exception these complexes had stereochemistry (a) of Fig. 1 [8]. The compound [PtCH₃I₃]_n has been reported [7, 10] and was found to decompose on reaction with pyridine [7]. In the present paper dimethylplatinum(IV) compounds of the type [Pt(CH₃)₂L₂X₂] which have structures (b) and (c) of Fig. 1 have been prepared by addition of CH₃I to monomethylplatinum(II) compounds, and the first monomethylplatinum(IV) compounds containing N-donor ligands are also reported.

Fig. 1. Possible isomers for complexes of the type $Pt(CH_3)_2L_2X_2$ containing *cis* methyl groups.

Results and discussion

Kistner et al. [11] described the preparation of $PtCH_3(NBD)I$ (NBD = norbornadiene) and its reaction with pyridine to produce $PtCH_3Py_2I$, but apart from reporting the infrared spectrum of $PtCH_3(NBD)I$ the compounds were not further studied. We have found that a variety of ligands, including 1,5-cyclooctadiene (COD), N,N,N',N'-tetramethylethylenediamine (Tetrameen) and 3,5lutidine (Lut), readily displace norbornadiene from $PtCH_3(NBD)I$ to form the compounds $PtCH_3L_2I$, where L_2 is one bidentate or two unidentate ligands (Scheme 1). These compounds are all soluble in organic solvents and the ¹H NMR spectra in CDCl₃ are recorded in Table 1. Reference to Table 1 shows that the ¹H NMR spectra are consistent with the compounds postulated above. The compounds $PtCH_3(NBD)I$ and $PtCH_3(COD)I$ both exhibit two distinct olefinic proton resonances each with a different coupling constant ² $J(1^{195}Pt-CH)$, as would be predicted on the basis of the results of *trans* influence studies [12] which indicate that the coupling *trans* to CH₃ should be smaller than that *trans* to I. Thus the resonance with $J \sim 35$ Hz is assigned in each case to the olefinic

protons trans to CH_3 and that with $J \sim 76$ Hz to those trans to I. A similar nonequivalence of the N-methyl protons appears in the spectrum of PtCH₃TetrameenI, and the coupling constants for N-methyl protons trans to CH_3 and I are 16.3 Hz and 52.8 Hz respectively. As shown in Table 1 the methyl-platinum protons are also sensitive to the nature of the trans ligand, ranging from 77.4 to 85.3 Hz in these compounds.

For the compound PtCH₃Lut₂I, two isomers are possible viz. those with *cis* and *trans* lutidine groups. The ¹H NMR spectrum exhibits only a single lutidine α -proton resonance, ³J(¹⁹⁵Pt-C-H_{α}) 50.0 Hz, consistent with the presence of *trans* lutidine groups.

Preliminary experiments indicate that primary amines also react with $PtCH_3$ -(NBD)I, and with benzylamine the compound $PtCH_3(BzNH_2)_2I$ may be obtained in low yield. It may be noted that the reaction between $Pt(NBD)Cl_2$ and amines involved nucleophilic attack at one double bond of the diene rather than substitution at the platinum atom [13].

The compound PtCH₃(NBD)I reacts very slowly with CH₃I to form orange crystals of $[Pt(CH_3)_3I \cdot Pt(CH_3)_2I_2]_n$, identified from its infrared spectrum [8], rather than the expected product, $[Pt(CH_3)_2I_2]_n$. In contrast, both *trans*- $[PtCH_3-Lut_2I]$ and PtCH₃TetrameenI react rapidly with CH₃I to form Pt(CH₃)₂Lut₂I₂ and Pt(CH₃)₂ TetrameenI₂, respectively (Scheme 1).

 $[Pt(CH_3)_2 Lut_2 I_2]$ is sparingly soluble in organic solvents and its NMR spectrum could not be obtained. The compound reacts with aqueous AgClO₄ and the NMR spectrum of the water-soluble product exhibits a single methyl-platinum triplet with ${}^2J({}^{195}Pt-CH_3)$ 74.6 Hz, which suggests that the CH₃ groups are *trans* to O-donor (H₂O) ligands [12]. The α -protons of the lutidine molecules are represented by a single triplet with ${}^3J({}^{195}Pt-N-C-H_{\alpha})$ 35.4 Hz, indicating that these are in positions *trans* to each other rather than *trans* to CH₃ where a value of ~ 13 Hz would be expected [8]. The species in solution is thus $[Pt(CH_3)_2 Lut_2 - (H_2O)_2]^{2+}$ with CH₃ *trans* to H₂O. By evaporation of the solution a white solid of formula $[Pt(CH_3)_2 Lut_2(H_2O)_2](ClO_4)_2 \cdot H_2O$ may be isolated. Assuming no rearrangement has occurred during the reaction, the compound $Pt(CH_3)_2 Lut_2 I_2$ must have structure (b) of Fig. 1.

Pt(CH₃)₂ TetrameenI₂ is unstable both in the solid state and in solution, losing CH₃I to reform PtCH₃ TetrameenI. The ¹H NMR spectrum (Table 1) of a freshly prepared sample is consistent with the compound having structure (c) of Fig. 1. There are two non-equivalent methyl-platinum triplets with coupling constants of 68.8 Hz and 70.4 Hz which are tentatively assigned to CH₃ groups *trans* to I and lutidine respectively. Four non-equivalent N-methyl resonances are observed with different coupling constants which result from different *trans* groups and different spatial arrangements of the CH₃ groups. The peaks at τ 6.51 and 7.28 with coupling constants 11.5 and 14.8 Hz may be assigned to the protons on the N-methyl groups *trans* to CH₃ while those at τ 6.70 and 7.59 with coupling constants of 32.0 and 37.4 Hz are assigned to the N-methyl protons *trans* to I.

Both $PtCH_3Lut_2I$ and $PtCH_3TetrameenI$ readily add iodine to produce the monomethylplatinum(IV) compounds $PtCH_3Lut_2I_3$ and $PtCH_3TetrameenI_3$ respectively (Scheme 1), The former is a dark brown solid and the latter is dark green. Both are sparingly soluble in organic solvents and NMR spectra were not

(Continued on p. 262)

			11g))												
		rion	r(Pt—H(4.25	4.40	7.11	7.12	6.51 6.70	7.28	7.69	nethyl.				
		DS IN CDCI, SOLU	Donor atom trans-H(lig)	э,	- 0 -	- 0	- Z	0 4	C	N I)letinic bond trans-r	•			
		M(IV) COMPOUNE	J(PtH(Ug)) a	33.8	37.4 37.4	16.3	52.8 50.0	11.5 32.0	14.8	37.4 35.4	protons (Lut). ^b C	• .			
• • •	-	THYLPLATINU	7(CH3-Pt)	9.03	8.88	9.28	9.14	7.85		1	l _a protons and H _Q			-	
		IMID GNP (II)WI	Donor atom trans-CH3	Ą	- -	N	I	Z I		0	ic protons, N-CH				
•		METHYLPLATINU	J(¹⁹⁵ PtCH ₃)	85,3	72.9	77.4	86.3	70.4 68.8		74.6	een ¹⁹⁵ Pt and olefin				
		TABLE I 'H NMR SPECTRA OF MONO	Compound	PtCH ₃ (NBD)I	PtCH ₃ (COD)I	PtCH ₃ Tetrameenl	PtCH ₃ Lut ₂ I	Pt(CH ₃) ₂ TetrameenI ₂		[Pt(CH ₃) ₂ Lut ₂ (H ₂ O) ₂] ^{2 + c}	^a Values refer to coupling betw ^c Measured in H. O solution no				

FABLE 2

ANALYSES AND YIELDS OF THE PRODUCTS OBTAINED

(43.8) 43.2 (43.0) 35.0 (35.4) (45.5) 43.6 (35.4) 35.2 (24.2) 27.2 (27.6) (36.1) 46.2 (28.1) 32.2 (32.8) 23.9 35.8 28.0 Pt (5.1) 3.8 3.9 3.9 (4.0) 4.4 (4.7) 3.3 (3.5) 3.6 (4.0) (5.1) 5.0 6.2) 5.0 z Analysis (found (calcd.)) (%) 30.0 (29.6) 28.7 (28.5) 23.6 36.9 (36.6) 42.1 (42.6) 46.9 (47.3) (63.9) 28.4 (28.0) 64.1 (1.5)((4.4) 3.8 3.8 (3.7) 2.8 (2.6) (2.6) (2.6) , H 1.5 (18.5) (32.7) 32.6 (32.7) (27.7) 27.9 (27.8) (16.1) 22.6 (22.4) 11.9) (15.5) (22.4) (24.3) 32.6 16.6 24.5 18.4 27.7 11.7 16.7 22.4 Yield (%) 80--90 06--08 80--90 8 85 15 8 90 80 06 60 C16H30Cl2N2O11Pt Empirical formula C16H24I2N2Pt C₁₅H₂₁I₃N₃Pt C_bH₂₂I₂N₂Pt C,H19I3N2Pt C₁₅H₂₁IN₂Pt C₁₅H₂₁IN₂Pt C₇H₁₉IN₂Pt C₈H₁₁I₂Pt C₆H₁₁IPt C,H,,IPt $[Pt(CH_3)_2 Iut_1(H_2 O)_2](ClO_4)_1 \cdot H_2 O$ Pt(CH₃)₂Tetrameenl₂ PtCH₃ TetrameenI₃ PtCH₃TetrameenI PtCH₃(BzNH₂)₂I Pt(CH₃)₁Lut₁I₂ PtCH₃(NBD)I PtCH₃(COD)I PtCH₃Lut₂I₃ PtCH₃Lut₂I Compound Pt(NBD)1₃

261

obtained. Both compounds tend to decompose on prolonged standing in solution, apparently with loss of the methyl group.

Experimental

Analytical data and yields see Table 2.

Preparation of $Pt(NBD)I_2$. The compound was prepared by the method of Alexander et al. [14] and recrystallized from chloroform.

Preparation of $PtCH_3(NBD)I$. The compound was prepared by the method of Kistner et al. [11] and recrystallized from chloroform—petr. ether.

Preparation of $PtCH_3L_2I$ ($L_2 = COD$, Tetrameen, L = Lut, $BzNH_2$). $PtCH_3$ -(NBD)I (0.2 g) was dissolved in chloroform (5 ml) and a slight excess of the appropriate ligand added. After refluxing for 30 min the solution was concentrated to a small volume and the product precipitated out with petr. ether.

Preparation of $Pt(CH_3)_2Lut_2I_2$. PtCH₃Lut₂I (0.2 g) was dissolved in chloroform (5 ml) and CH₃I (5 ml) added. On heating the mixture a fawn solid precipitated out and was filtered off and washed with chloroform.

Preparation of $[Pt(CH_3)_2Lut_2(H_2O)_2](ClO_4)_2 \cdot H_2O$. Pt(CH₃)₂Lut₂I₂ (0.1 g) was suspended in acetone (5 ml) and water (5 ml), and 2.4 ml of 0.12 M AgClO₄ solution added. The mixture was boiled for 10 minutes and filtered to remove AgI and the resultant solution evaporated to dryness. The product was a white crystalline solid.

Preparation of $Pt(CH_3)_2$ Tetrameen I_2 . PtCH₃ TetrameenI (0.2 g) was dissolved in chloroform (5 ml) and CH₃I (5 ml) added. The mixture was boiled for 5 minutes, the yellow solution concentrated to a small volume and the product precipitated with petr. ether. The product is a bright yellow solid which slowly decomposes both in the solid state and in solution to regenerate PtCH₃ TetrameenI.

Preparation of $PtCH_3Lut_2I_3$. $PtCH_3Lut_2I$ (0.1 g) was suspended in chloroform (5 ml) and a solution of iodine (0.046 g) in chloroform (5 ml) added. The solution immediately turned red-brown and a brown solid precipitated slowly. Addition of petr. ether completed the precipitation and the product was filtered off, washed with petr. ether and air-dried.

Preparation of $PtCH_3TetrameenI_3$. $PtCH_3TetrameenI$ (0.1 g) was dissolved in chloroform (5 ml) and a solution of iodine (0.056 g) in chloroform (5 ml) added. The solution immediately turned a deep green and a dark green solid precipitated. The precipitation was completed by addition of petr. ether (20 ml) and the product filtered off and washed with petr. ether.

¹H NMR spectra were recorded on a JEOL MH 100 spectrometer using a sweep width of 540 Hz and TMS as internal reference. Spin—spin coupling constants are considered accurate to ± 0.5 Hz and τ values to ± 0.01 ppm.

References

- 1 J.D. Ruddick and B.L. Shaw. J. Chem. Soc. A, (1969) 2801.
- 2 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. A, (1969) 2964.
- 3 A.J. Cheney and B.L. Shaw, J. Chem. Soc. A, (1971) 3545.
- 4 A.J. Cheney and B.L. Shaw, J. Chem. Soc. A, (1971) 3549.

5 J.R. Hall and G.A. Swile, Austral. J. Chem., 24 (1971) 423.

- 6 H.C. Clark and L.E. Manzer, J. Organometal. Chem., 59 (1973) 411.
- 7 V.M. Kharchevnikov, Russ. J. Gen. Chem., 43 (1973) 817.
- 8 J.R. Hall and G.A. Swile, J. Organometal. Chem., 56 (1973) 419.
- 9 J.R. Hall and G.A. Swile, in press.
- 10 H. Gilman, M. Lichtenwalter and R.A. Benkeser, J. Amer. Chem. Soc., 75 (1953) 2063.
- 11 C. Kistner, J. Hutchinson, J. Doyle and J. Storlie, Inorg. Chem., 2 (1963) 1255.
- 12 D.E. Clegg, J.R. Hall and G.A. Swile, J. Organometal. Chem., 38 (1972) 403.
- 13 R. Palumbo, A. De Renzi, A. Panunzi and G. Paiaro, J. Amer. Chem. Soc., 91 (1969) 3874.
- 14 R.A. Alexander, N.C. Baenziger, C. Carpenter and J.R. Doyle, J. Amer. Chem. Soc., 82 (1960) 535.